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Abstract. The disturbances are the significant issue
for the trajectory tracking of mobile robots. There-
fore, an adequate control law is presented in this paper
and this one is based on Global Terminal Sliding Mode
(GTSM) with fuzzy control. This control law aims to
guarantee the avoidance of the kinematic disturbances
which are injected in the angular and linear velocities,
respectively. Moreover, the dynamic model based on
exponential reaching law is presented to avoid the un-
certainties. The control law provides the asymptotic
stability by taking into account the fuzzy rules and Lya-
punov theory. Thus, the chattering phenomenon should
be avoided. The simulation works prove the robustness
of the proposed control law by considering the distur-
bances function and the robot can follow the desired
trajectories.
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1. Introduction

The domain of robotic is usually known with its ex-
ternal disturbances and perturbations. So, the recent
works are oriented on the control of this kind of sys-
tems, especially the nonholonomic systems. In this do-
main, it is interesting to obtain a stable movement of
trajectory tracking [1] and [2]. Sliding Mode Control
(SMC) is known by its solution to design the control
law and the stability of disturbed systems [3] and [4].
The sliding mode depends on the sliding surface, which
is exponentially stable by taking into account the Lya-

punov method to guarantee the asymptotically stabil-
ity of the system. A method known as conventional
sliding mode suggests a discontinuous function and this
one produces high frequencies known as chattering phe-
nomenon. In this fact, many works use a higher-order
sliding mode as a solution to this problem to reduce
the chattering effect [5]. Furthermore, many authors
have suggested methods to minimize this phenomenon
by using traditional sliding mode control [6], [7] and
[8]. A standard sliding mode has been exposed to be
efficient control approach in the stabilization of nonlin-
ear systems [9] and [10]. Another type of sliding mode
control with observer is proposed in [11] in order to
improve the efficiency of induction motor drive. The
reason of using sliding mode control is in its good re-
sults and the simplicity of the control law [5] and [12].

A robust sliding mode controller for trajectory track-
ing for nonholonomic robot is proposed by [13], which
gives a good simulation results against the uncertainty
presented in the model. Another work presented in
[14] proposes a new controller using sliding mode con-
trol with kalman filter for the trajectory tracking.

A fuzzy controller proposed in [15] is used to adjust
the sliding surface parameters and to accelerate the
system to attain the reaching phase.

The fuzzy logic is a probable solution to reduce the
chattering problem as presented in [16] and [17]. An-
other work [18] applies a fuzzy sliding mode observer
for synchronous motor, using sigmoid function, in order
to minimize the effect of chattering. Many researchers
suggest an adaptive fuzzy terminal sliding mode con-
trol for nonlinear systems with non-singularity in or-
der to reach a fast convergence in presence of exter-
nal disturbances [19] and [20]. In this area, to resolve
the convergence states error problem in a short time,
to mitigate the harmful effects of the external distur-
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bances and to improve the robustness of mobile robot
trajectory tracking, a new method is presented in this
paper.

The proposed control method of trajectory track-
ing is divided in two subsystems, a kinematic control
and a dynamic control. The kinematic control uses
a Global Fast Terminal Sliding Mode control (GFTSM)
in order to avoid the disturbances of the angular ve-
locity. The main objective is to stabilize the orien-
tation error of trajectory tracking to zero in finite
time with asymptotic stability against the uncertain-
ties and external disturbances presented in a kinematic
model. The terminal attractor is implemented in the
sliding surface and brings the orientation error to zero
rapidly and the convergence rate to the linear sliding
surface is assured. The used robot model, initially
perturbed, can converge to equilibrium stable point
[21] by using Global Fast Terminal Sliding Mode Con-
trol (GFTSMC). Thereafter, the work aims to provide
a kinematic controller using the fuzzy logic to tackle
the effect of the disturbances presented in a kinematic
model and attenuate the chattering phenomenon of the
linear disturbed velocity. Therefore, the parameters se-
lection by fuzzy logic can eliminate the effect of the dis-
turbances and tends the robot position errors to zero
in short time. It has been noticed that the conver-
gence error posture of the robot could be faster with
asymptotic stability using this control law.

The dynamic control using the exponential sliding
mode provides an effective method to tackle the un-
certainties and disturbances presented in a dynamic
model. The main advantages of this control law are the
stability of the velocity error to zero for any bounded
disturbances presented in the model and the guarantee
of the system asymptotic stability. The performance
comparison among the achieved controller in [22] and
the control law, which is presented in this paper shows
that GFTSMC has a perfect performance and can deal
with the effect of disturbances by using the fuzzy logic.
This work is organized as follows: Kinematic and Dy-
namic models are presented in Sec. 2. A kinematic
control based on a global fast terminal sliding mode
and fuzzy theory is proposed in Sec. 3. An expo-
nential reaching law control is proposed in Sec. 4.
Finally, simulation results are presented in Sec. 5.

2. Kinematic and Dynamic
Models

The mobile robot used in this work is given in Fig. 1.
For the robot motion, the following equations describe
the movement of the robot:

v = Ra

(
ϕ̇r + ϕ̇l

2

)
, (1)

Fig. 1: Diagram of mobile robot.

ω =
Ra
2L

(ϕ̇r − ϕ̇l) . (2)

ϕ̇r and ϕ̇l are the linear velocities of the right and left
wheels, respectively. θ is the orientation angle of the
mobile robot, v represents the linear velocity and Ra is
the wheel radius, ω indicates the angular velocity and
2L is the distance separating the two wheels.

The posture of the robot is introduced with the real
vector ρ = (xyθ)T and the control vector γ = (vω)T .

The disturbed kinematic model [23], [24], [25] and
[26] is given by:

ρ̇ =

ẋẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 (γ +D) . (3)

D is the unknown disturbance, which is bounded [27]
and expressed by Eq. (4).

D = [dv dω]
T
, (4)

where | dv |< ζv, | dω |< ζω. dv and dω are the distur-
bances of the linear and angular velocities, respectively.
ζv and ζω are positive limited constants.

The dynamic model of the mobile robot [16] and [28]
is described by Eq. (5):

M(q)V̇ + V (q, q̇)V +F (q̇) +G(q) + τd = β(q)τ +R(t),
(5)

where V = (v ω)T is a vector, which has as compo-
nents v and ω and τ = (τr τl) represents the torques
of the right and left wheels.

M(q) =

[
m 0
0 I

]
and β(q) =

1

Ra

[
1 1
L −L

]
, (6)

where m is the robot mass and I the inertia moment.

R(t) represents the disturbance vector 2×1. V (q, q̇)
is the centripetal and Coriolis forces. F (q̇) is the fric-
tion matrix.
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G(q) represents the gravitational vector and τd is an
unknown disturbance.

Equation (3) and Eq. (5) of the robot model are used
in order to elaborate the control law based on fuzzy
global fast terminal sliding mode and exponential slid-
ing mode control. This control algorithm is applied
to satisfy the asymptotic convergence and at the same
time eliminate the effect of disturbances, which are oc-
curring in linear and angular velocities.

lim
t→∝

ρe = lim
t→∝

‖ ρr(t)− ρ(t) ‖= 0, (7)

where: ρr = (xr yr θr)
T is the reference posture

of mobile robot and ρe = (xe ye θe)
T is an error

posture between the real vector ρ and the reference ρr.

3. Kinematic Control

Concerning the trajectory tracking, the reference pos-
ture ρr of the mobile robot and a desired velocity
γr = (vr ωr)

T are used.

The error posture ρe is represented by the following
system [29]:

ρe =

xeye
θe

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xr −x
yr −y
θr −θ

 . (8)

By introducing the nonholonomic constraints Eq. (9)
into the system Eq. (8), the velocity error without dis-
turbances is defined as in [30] by Eq. (10).

ẋ sin θ + ẏ cos θ = 0, (9)

ρ̇e =

ẋeẏe
θ̇e

 =

yeω + vr cos θe − v
−xeω + vr sin θe

ωr − ω

 . (10)

Considering the disturbances on the velocities v and ω,
Eq. (10) becomes as follows:

ρ̇e =

ẋeẏe
θ̇e

 =

vr cos θe
vr sin θe
ωr

+

−1 ye
0 −xe
0 −1

[v + dv
ω + dω

]
=

=

vr cos θe − (v + dv) + ye(ω + dω)
vr sin θe − xe(ω + dω)

ωr − (ω + dω)

 . (11)

Assumption 1. The trajectory tracking error can
be bounded and can asymptotically converge to zero
when the factor t → ω, depending on the input vec-
tor γ = (v ω)T by taking into account the following
constraints: | v |≤ vmax and | ω |≤ ωmax.

The purpose of this control is to design a controller
such as the mobile robot converges asymptotically to
the desired trajectory.

3.1. Design of the Angular Velocity
Control

In order to make θe converge to zero, the linear and
the terminal sliding surface are chosen as in [31].

s = ẋ+ αx+ βxq/p = 0. (12)

The Eq. (13) is written as:

ẋ = −αx− βxq/p = 0, (13)

with α and β > 0 and p, q(p > q) are positive parame-
ters.

The benefit of the non-linear term in Eq. (13) is
the increase of the convergence rate when the state
is far away from the origin. Therefore, the integral of
Eq. (13) gives the reaching time ts.

This reaching time is:

ts =
p

α(p− q)
ln
αx(0)

p−q
p + β

β
. (14)

Assumption 2. Equation (12) is used to design the
first sliding surface, which is selected as:

s1 = θ̇e + αθe + βθq/pe = 0. (15)

Equation (15) becomes:

θ̇e = −αθe − βθq/pe . (16)

According to Eq. (10) and Eq. (16), the following result
is obtained:

ωr − ω = −βθq/pe − αθe. (17)

The control law is obtained:

ωc = ωr + βθq/pe + αθe. (18)

The control law ωc can take θe to zero in finite time te
and the system Eq. (11) reaches the first sliding surface
s1 = 0. Then, the reaching time is:

te =
p

α(p− q)
ln
αθe(0)

p−q
p + β

β
. (19)

Remark 1. The control law ωc converge the dis-
turbed angular velocity to the reference one. Then,
the system Eq. (11) reaches ωr ≈ ω+dω in the time te.

Proof 1. In order to ensure the stability of the system,
the select Lyapunov function is given as:

Vθe =
1

2
θ2e . (20)

The derivative is given by:

V̇θe = θeθ̇e, (21)
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V̇θe = −βθ(q/p)+1
e − αθ2e ≤ 0. (22)

Remark 2. The derivative of Vθe is less than or equal
to zero by taking into account that the parameters
α ≥ β and the parameters p and q satisfy the condition
q
p ≺

lnα−ln β
ln θe

+ 1. Then, the system Eq. (11) converges
asymptotically to the first sliding surface s1 = 0.

3.2. Linear Velocity Controller
Design

In the reaching time te, the system reaches the first
sliding surface and the state θe tends to zero. Then,
the system Eq. (11) becomes:

ẋe = ωrye + vr − v − dv, (23)

ẏe = −ωrxe. (24)

Assumption 3. From Eq. (23) and Eq. (24), the se-
lected switching function is given as:

s2 = xe − ye. (25)

By designing the sliding mode control law, which leads
the sliding surface s2 to attain zero, it is interesting to
consider the convergence of the state xe to the state
ye and the two states converging to zero. In fact, the
exponential reaching law is defined by the following
equation:

ṡ2 = −G(t)Sign(s2)− ks2. (26)

To eliminate the chattering, a continuous function re-
places the sign function:

ṡ2 = −G(t)
ṡ2

| ṡ2 | +δ
− kṡ2, (27)

where k, δ and G(t) are positive parameters.

Equation (23), Eq. (24) and Eq. (25) are used and
the result is obtained as:

ṡ2 = ẋe − ẏe = ωrye + ωrxe + vr − vc. (28)

Using Eq. (27) and Eq. (28), the control law vc is de-
termined as:

vc = vr + ωrxe + ωrye +G(t)
s2

| s2 | +δ
+ ks2, (29)

where
G(t) = max | dv(t) | . (30)

In Eq. (29), G(t) is used in order to compensate the
effect of disturbance dv(t) and ensures the existing
condition of the sliding mode and permits to avoid the
chattering phenomenon.

Proof 2. For the stability analysis, the following Lya-
punov function is considered:

Vl =
1

2
s22. (31)

The derivative of Vl is given by:

V̇l = s2ṡ2 = s2(ωrxe + ωrye + vr − vc − dv). (32)

Using Eq. (29, the following equation is obtained:

V̇l = s2(−dv −G(t)
s2

| s2 | +δ
− ks2) =

= −s2dv −G(t)
s22

| s2 | +δ
− ks22 ≤ 0.

(33)

To provide the stability, the fuzzy system is applied
and the Lyapunov function Vl should be negative.
Indeed, dv(t) is time variant and in order to bring out
the effect of uncertainties, G(t) is time variant.

Remark 3. While the second surface s2 = 0, the
states xe and ye are equal and the states x and y are
equal to the reference xr and yr respectively. Using
this result and the square of the system Eq. (8), one
deduces that xe = ye = 0. So, the asymptotic tracking
stability is guaranteed.

3.3. Design of Fuzzy Control

The fuzzy system rules are used to estimate G(t) and
the control law of the linear velocity is designed [32]
and [33]. A fuzzy system is used to achieve the param-
eter Ĝ(t) of the exponential reaching law vc and the
block diagram is shown in Fig. 2.
So, to design the fuzzy control, it is interesting to as-
sure the condition of sliding mode, which is given by
the following equation:

s2ṡ2 < 0. (34)

If Eq. (34) is satisfied, then the system states will be
on the second sliding surface.

Assumption 4. In this system, s2 and ṡ2 are the
inputs and G(t) is the output. The fuzzy sets of the
inputs and output are the same and defined as follows:
(NL, NM, Z, PM, PL).

Where, NL, NM, Z, PM, PL are linguistic words and
presented as negative large, negative medium, zero,
positive medium and positive large. To ensure the
presence condition of sliding mode, the fuzzy rules are
applied as:

• If S2 is NL and if Ṡ2 is NL then G(t) is NL.
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Fig. 2: Diagram of the control system.

• If S2 is NM and if Ṡ2 is NM then G(t) is NM.

• If S2 is Z and if Ṡ2 is Z then G(t) is Z.

• If S2 is PM and if Ṡ2 is PM then G(t) is PM.

• If S2 is PL and if Ṡ2 is PL then G(t) is PL.

The inputs membership function is shown in Fig. 3
and Fig. 4 respectively. Thus, the output membership
function is given in Fig. 5.

The parameter G(t) is estimated by:

Ĝ(t) = k1

∫ t

0

G(t)dt, (35)

where k1 represents a gain.
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Fig. 3: Fuzzy sets of input function s2.

So, the control law in Eq. (29) becomes a new fuzzy
control law, which is indicated in this form:

vc = vr + ωrxe + ωrye + ks2 + Ĝ(t)
s2

| s2 | +δ
. (36)
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Fig. 4: Fuzzy sets of input function ṡ2.
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Fig. 5: Fuzzy sets of output function G(t).
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Proof 3. For the stability analysis, the derivative of
Lyapunov function Eq. (31) is considered.

V̇ = −s2dv− | s2 | Ĝ(t)− ks22, (37)

where | s2 | Ĝ(t)− ks22 > −s2dv.

Therefore, the control vc of sliding surface s2 con-
verges the error states to zero with asymptotic stabil-
ity. The general control law of kinematic model is given
as follows:

Vc =

[
vc
ωc

]
=

[
ωr + βθ

q/p
e + αθ

vr + ωrxe + ωrye + ks2 + Ĝ(t) s2
|s2|+δ

]
.

(38)

In fact if v = vc and ω = ωc, then the system closed
loop is asymptotically stable.

4. Dynamic Control

In this section, an exponential sliding mode control is
used for the torque control τ in order to guarantee the
convergence error Ve of the velocities.

lim
t→∝

Ve = lim
t→∝

‖ Vc(t)− V (t) ‖= 0. (39)

The control τ of dynamic model is designed in order
to take the actual velocities of the robot to the reference
obtained with the kinematic controller.

4.1. Dynamic Model

Consider the dynamic model Eq. (5) and taking into
account that the robot moves in horizontal plan, there-
fore gravitational vector, centripetal vector, Coriolis
matrix, friction matrix and unknown disturbances be-
come zero. The dynamic model Eq. (5) becomes as
follows:

M(q)V̇ = β(q)τ +R(t). (40)

4.2. Dynamic Control Based on
Exponential Sliding Mode

In this section, the exponential sliding mode control
is used to force the dynamic model of the robot to
guarantee the asymptotic stability. Thus, the velocity
error is chosen as:

Ve =
[
ev eω

]T
=

[
vc − v
ωc − ω

]
. (41)

The derivative velocity error is given as:

V̇e =

[
v̇c − v̇
ω̇c − ω̇

]
. (42)

The selected sliding surfaces are:

S =

[
s3
s4

]
=

[
vc − v
ωc − ω

]
. (43)

The derivative sliding surfaces are:

Ṡ =

[
ṡ3
ṡ4

]
=

[
v̇c − v̇
ω̇c − ω̇

]
. (44)

Assumption 5. Using the exponential sliding mode
control:

Ṡ =

[
−ε1sgn(s3)− µ1s3
−ε2sgn(s4)− µ2s4

]
, (45)

where ε =

[
ε1 0
0 ε2

]
and µ =

[
µ1 0
0 µ2

]
are positive

constants.

Thus, combining Eq. (41) and Eq. (46), the dynamic
control is given as:

τ = β(q)−1M(q)(V̇c + εsgn(S) + µS). (46)

Consider the dynamic model Eq. (40) with the distur-
bance and uncertainties R(t), the result is given as [34]:

V̇ = M(q)−1β(q)τ +M(q)−1R(t). (47)

By choosing:

M(q)−1β(q) = Q = (Q̂+ ∆Q). (48)

∆Q represents the uncertainties and Q̂ is the nominal
term of the matrix. Therefore, ϕ(t) is defined as the
upper bound uncertainty, which is given as follows:

∆Qτ +M(q)−1R(t) = ϕ(t), (49)

where | ϕ(t) |≤ φ and φ is constant positive parameter.

The control law is determined as:

τ = Q̂−1(V̇c + εsgn(S) + µS), (50)[
τ1
τ2

]
= Q̂−1

([
v̇c
ω̇c

]
+

[
ε1 0
0 ε2

] [
sgn(s3)
sgn(s4)

]
+

[
µ1 0
0 µ2

] [
s3
s4

])
.

(51)

In order to avoid the chattering phenomenon created
by the sign function, a quasi-sliding mode function is
applied:

Ṡ =

[
−ε1 s3

abs(s3)+δ1
− µ1s3

−ε2 s4
abs(s4)+δ2

− µ1s4

]
. (52)

The control law of the dynamic system is:[
τ1
τ2

]
= Q̂−1

([
v̇c
ω̇c

]
+

[
ε1 0
0 ε2

]
+

[
s3

abs(s3)+δ1
s4

abs(s4)+δ2

]
[
µ1 0
0 µ2

] [
s3
s4

])
.

(53)
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Proof 4. The selection of Lyapunov function is as
follows [35]:

Vd =
1

2
STS. (54)

The derivative of the Lyapunov function Vd is obtained.

V̇d = ST Ṡ = s3ṡ3 + s4ṡ4. (55)

Equation (55) becomes as follows:

V̇d = ST Ṡ = −ε1
s23

abs(s3) + δ1
− µ1s

2
3

−ε2
s24

abs(s4) + δ2
− µ2s

2
4 ≤ 0,

(56)

where diag (ε1, ε2) > 0, diag (µ1, µ2) > 0 and δ1,
δ2 > 0.

Remark 4. The parameter diag (µ1, µ2) is taken in
order to compensate the effect of disturbances and un-
certainties of the system.

5. Simulation Results

In this section, to show the efficacy of the control law,
simulation works under Matlab environment are re-
alized, and three different trajectories (circular, sinu-
soidal and specific) are considered. The mobile robot
parameters used for simulation are given as follows:
m=4 kg, I=3 kg·m2, Ra=0.03 m and L=0.15 m.

The desired parameters of control are selected as be-
low vr=2 m·s−1 and ωr=2 rad·s−1. The desired tra-
jectory of the robot is:

xr r cos(ωrt) = cos(2t)

yr r sin(ωrt) = sin(2t)

θr = ωrt = 2t.

(57)

The controller parameters are chosen arbitrarily.
p = 10, q = 9, k = 30, K1 = 250, α = 50, β = 50,
δ = 0.08.

A limited periodic disturbance term is inserted between
time 4 < t < 5 and considered as follows:{

dv = sin(t− π)

dω = 2 sin(t− π).
(58)

The parameters of the dynamic controller are selected
as: ε1 = 80, ε2 = 80, µ1 = 30, µ2 = 30, δ1 = 0.95and
δ2 = 0.95 and the dynamic disturbances, introduced
between four and five seconds (4 s< t <5 s) are con-
sidered:

E(t) = [2.5 sin(t− π) 1.5 sin(t− π)]. (59)

The initial position and orientation errors are given
as (2 m, 1 m) and (π/6 rad) respectively. Figure 6

0 2 4 6 8 10 12 14 16 18 20
Time(s)

-40

-20

0

20

40

60

80

v 
(m

/s
)/

 
 (

ra
d/

s)

v

Fig. 6: Control law of the signals vc and ωc.

represents the control signals vc and ωc of the kinematic
model.

It can be seen that the actual linear and angular
velocities of the proposed control can reach the desired
velocities in short time.

By using the kinematic and dynamic controllers of
Eq. (38) and Eq. (53), the simulation results of a cir-
cular trajectory tracking are shown in Fig. 7.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
x(m)

-1.5

-1
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0

0.5

1

1.5

y(
m

)

Reference Trajectory

Real Trajectory

Fig. 7: Circular trajectory tracking of the mobile robot.

Hence, the mobile robot can achieve the circular tra-
jectory rapidly in short time among t = 2 s in pres-
ence of disturbances and the asymptotic stability of
the robot is assured. This is the main advantage of
the proposed control law in term of error states con-
vergence to zero and the elimination of the disturbance
effect. On the other side in [36], the robot cannot con-
verge completely to the reference and the error states
cannot stabilize fully to zero due of some perturbation.
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Figure 8 represents the trajectories tracking errors
of the states xe and ye of the system ρe.
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Fig. 8: Position tracking errors of the states xe and ye.

The orientation error θe is illustrated in Fig. 9.
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Fig. 9: Orientation tracking error θe.

By using the dynamic controller, the torques and
the velocity errors are shown in Fig. 10 and Fig. 11
respectively.

For the sinusoidal trajectory, the same initial po-
sition and orientation errors are considered, but the
reference posture is selected as follows:

xt = t

yr = sin(2t)

θr = ωrt = 2t

. (60)

The control signals vc and ωc are illustrated in Fig. 12.

The simulation results for a sinusoidal trajectory
tracking are shown in Fig. 13. It can be seen that
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Fig. 10: Generated torques τ1 and τ2.
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Fig. 11: Velocity errors ev and eω .
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Fig. 12: Control law of the signals vc and ωc.
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the mobile robot converges to the reference trajectory.
Figure 14 represents the trajectory tracking errors of
the states xe and ye of the system ρe. The orientation
θe is illustrated in Fig. 15.
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Fig. 13: Sinusoidal trajectory tracking.
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Fig. 14: Position tracking errors of the states xe and ye.
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Fig. 15: Orientation tracking error θe.

The torques and the error velocities are shown in
Fig. 16 and Fig. 17 respectively.
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Fig. 16: Generated torques τ1 and τ2.
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Fig. 17: Velocity errors ev and eω .

The torques obtained with the proposed controller in
presence of disturbances converges to zero. Thus, the
error velocities converge asymptotically to zero before
and after inserting the external disturbances.

For the specific trajectory, the followed values (3 m,
2 m π/6 rad), for the initial position and orientation
error are considered.

xr = cos t

yr = sin 2t

θr = ωrt = 2t

. (61)

The control signals vc and ωc are illustrated in Fig. 18.

The simulation results of the specific trajectory are
shown in Fig. 19.
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Figure 20 represents the error states of xe and
ye. The orientation error θe is showed in Fig. 21.
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Fig. 18: Control law of the signals vc and ωc.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
x(m)

-1.5

-1

-0.5

0

0.5

1

1.5

y(
m

)

Reference Trajectory
Real Trajectory
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Fig. 20: Position tracking errors.

The torques and error velocities are shown in Fig. 22
and Fig. 23.
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Fig. 21: Orientation tracking error θe.
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Fig. 22: Generated torques τ1 and τ2.
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Fig. 23: Velocity errors ev and eω .
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The comparison of each selected trajectory is given
in the Tab. 1, using the convergent time and the mean
error which is the average error using Eq. (62):

ME =

N∑
k=1

E(k)

N
. (62)

Tab. 1: Convergent time and mean error.

Trajectories
Circular Sinusoidal Specific

Convergenttime
before disturbances(s) 2 3 2

Convergent time after
disturbances(s) 7 7 7

Mean position error of
xe(m) 0.1216 0.1218 0.1893

Mean position error of
ye (m) 0.0682 0.0685 0.1315

Mean orientation error of
θe (m) 0.0293 0.0292 0.0282

Figure 7, Fig. 13 and Fig. 19 show the simulation
results for different initial posture errors under fuzzy
sliding mode control. It can easily be seen that the
tracking errors xe, ye and θe tend to zero using the
control laws Eq. (38) and Eq. (53).

Comparing the results achieved in this work, and
those obtained with other works, it can be seen that
the convergence of error states in this paper is rapid
with t = 2 s, contrariwise to [37] where t = 6 s.

It can be viewed that the system is affected by the
perturbation, but the control law vc and the control
torque τ can return the mobile robot to its reference. In
Fig. 11, Fig. 17 and Fig. 23, the error between the linear
velocities v and vc and the angular velocities ω and ωc
converge to zero in short time after the disturbances
have been inserted in the system.

The proposed controller can correct the deviation
caused by some kind of perturbations, and the system
stays asymptotically stable. Furthermore, the chatter-
ing phenomenon is avoided.

The control obtained based on fuzzy sliding mode
control has the ability to remove some kind of possi-
ble bounded disturbances by selecting the appropriate
value of the parameter G(t), which is a function of the
fuzzy sets of the second sliding surface and its deriva-
tive, therefore the selected parameter G(t) can delete
the inserted disturbances.

All the simulation results indicate that the posture
errors converge to zero in presence of external distur-
bances in a very short time. In other words, the results
verify that the control method is robust to break out
the external disturbances and uncertainties in case of
many trajectories (sinusoidal, circular and specific).

6. Conclusion

In this paper, a Global Fast Terminal Sliding Mode
(GFTSM) and fuzzy logic approach with exponential
sliding mode control is presented. A GFTSM is de-
signed for the angular velocity and implemented in or-
der to take the angle error to zero in a finite time,
which is indicated in Fig. 9, Fig. 15 and Fig. 21. The
convergence time is almost 2 seconds before inserting
the disturbances, and t = 3 s after introducing the
disturbances.

The presented control law is based on exponential
reaching law with fuzzy system and an integrator gain
for the linear velocity in order to take the error states
xe and ye to zero, thus the simulation results show that
the two states converge in the time t=1.5 s. The dy-
namic control based on exponential sliding mode con-
trol aims to converge the velocity errors to zero between
the real velocities and the velocities obtained with kine-
matic controller; therefore the convergent time of the
velocity error is almost 2 seconds.

These control laws of linear and angular velocity can
assure the asymptotical stability of the system by ap-
plying the Lyapunov theory, and proves that the con-
troller is stable for any combination of the error states
and can bring out the chattering phenomenon. The
advantage of this control law is to eliminate the uncer-
tainties and the external disturbances due to kinematic
model and dynamic model, such that the error states
of the robot converge to zero.

The undertaken simulation works show clearly the
efficacy of this approach. This technique has been
proved for nonholonomic mobile robots in trajectories
tracking with different configurations as circular, sinu-
soidal and specific trajectories.
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